Enhanced peptide mass fingerprinting through high mass accuracy: Exclusion of non-peptide signals based on residual mass.
نویسندگان
چکیده
Peptide mass fingerprinting (PMF) is among the principle methods of contemporary proteomic analysis. While PMF is routinely practiced in many laboratories, the complexity of protein tryptic digests is such that PMF based on unrefined mass spectrometric peak lists is often inconclusive. A number of data processing strategies have thus been designed to improve the quality of PMF peak lists, and the development of increasingly elaborate tools for PMF data reduction remains an active area of research. In this report, a novel and direct means of PMF peak list enhancement is suggested. Since the monoisotopic mass of a peptide must fall within a predictable range of residual values, PMF peak lists can in principle be relieved of many non-peptide signals solely on the basis of accurately determined monoisotopic mass. The calculations involved are relatively simple, making implementation of this scheme computationally facile. When this procedure for peak list processing was used, the large number of unassigned masses typical of PMF peak lists was considerably attenuated. As a result, protein identifications could be made with greater confidence and improved discrimination as compared to PMF queries submitted with raw peak lists. Importantly, this scheme for removal of non-peptide masses was found to conserve peptides bearing various post-translational and artificial modifications. All PMF experiments discussed here were performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), which provided the high mass resolution and high mass accuracy essential for this application. Previously reported equations relating the nominal peptide mass to the permissible range of fractional peptide masses were slightly modified for this application, and these adjustments have been illustrated in detail. The role of mass accuracy in application of this scheme has also been explored.
منابع مشابه
Systematic characterization of high mass accuracy influence on false discovery and probability scoring in peptide mass fingerprinting.
Whereas the bearing of mass measurement error on protein identification is sometimes underestimated, uncertainty in observed peptide masses unavoidably translates to ambiguity in subsequent protein identifications. Although ongoing instrumental advances continue to make high accuracy mass spectrometry (MS) increasingly accessible, many proteomics experiments are still conducted with rather larg...
متن کاملFAST ATOM BOMBARDMENT MASS SPECTROMETRY (FABMS) ANALYSIS OF AN N- TERMINAL - BLOCKED PEPTIDE
FABMS analysis of T-lb peptide before and after one cycle of Edman degradation indicated an unblocked N-terminal Thr residue for this tryptic peptide. In contrast , our data showed a molecular protonated ion, MH + for T- la peptide at 655 mass units (mu) which is 42 mu higher than the MH ion of T- 1b peptide. In addition, T- la peptide was not amenable to one cycle of manual Edman degrada...
متن کاملQuantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)
The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...
متن کاملA peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation
Shotgun proteomics is an emerging tool for bacterial identification and differentiation. However, the identification of the mass spectra of peptides to genome-derived peptide sequences remains a key issue that limits the use of shotgun proteomics to bacteria with genome sequences available. In this proof-of-concept study, we report a novel bacterial fingerprinting method that enjoys the resolvi...
متن کاملEvaluating Peptide Mass Fingerprinting-based Protein Identification
Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2006